

Academic Year <u>Year; 7</u>	Content. Unit title and brief outline of content.	Skills taught in each unit.	Assessment – what knowledge and skills will be assessed and how?
Autumn A	 Working scientifically Lab safety Using equipment Planning investigations Recording and analysing data Cells Animal and plant cells Specialised cells Life process Unicellular organisms 	Science practical investigation skills. Using scientific equipment to build evidence towards a conclusion. Plan experiments or devise procedures to make observations, produce or characterise a substance, test hypotheses, check data or explore phenomena. Carry out experiments appropriately having due regard for the correct manipulation of apparatus, the accuracy of measurements and health and safety considerations. Make and record observations and measurements using a range of apparatus and methods. Use scientific vocabulary, terminology and definitions.	Exam style questions on both units with 30% weighting on content, 35% weighting on scientific skills and 35% weighting on application of skills. One 45-minute assessment mid-way through the half term.
Autumn B	Particles and their behaviour • States of matter • Diffusion • pressure Forces • squashing, stretching • drag and friction • contact and non contact force Structure of the body system • respiratory system • skeletal system	Converting data to different formats – manipulating raw data to create an appropriate graph. Understand how scientific methods and theories develop over time. Appreciate the power and limitations of science and consider any ethical issues which may arise. Use scientific theories and explanations to develop hypotheses. Use scientific vocabulary, terminology and definitions.	One 45-minute exam question based test with the same weightings as Autumn A. Questions will cover Particles, Forces and Cells.
Spring A	Structure of the body system (Finish) Elements atoms and compounds	Plan experiments or devise procedures to make observations, produce or characterise a substance, test hypotheses, check data or explore phenomena. Carry out experiments	Same format as previous assessments,

Spring B	 elements and periodic table making compounds formulae and word equations conservation of mass Reactions chemical reactions word equations exothermic and endothermic Sound waves frequency and amplitude echoes and ultrasound Sound (Finish) Reproduction adolescence reproductive systems fertilisation development of a foetus menstrual cycle plant reproduction Chemical reactions dissolving saturation and solubility distillation 	appropriately having due regard for the correct manipulation of apparatus, the accuracy of measurements and health and safety considerations. Make and record observations and measurements using a range of apparatus and methods. Use scientific vocabulary, terminology and definitions. Science practical investigation skills. Using scientific equipment to build evidence towards a conclusion. Converting data to different formats – manipulating raw data to create an appropriate graph. Understand how scientific methods and theories develop over time. Appreciate the power and limitations of science and consider any ethical issues which may arise. Use scientific vocabulary, terminology and definitions.	though two tests will be sat in one week covering every topic covered since September over 90 minutes. One 45 minute exam question based assessment on Sound and Reproduction with two questions covering content from the Autumn term.
Summer A	 chromatography Acids and Alkalis Ph scale and indicators neutralisation Light reflection, refraction the eye colour 	Converting data to different formats – manipulating raw data to create an appropriate graph. Understand how scientific methods and theories develop over time. Appreciate the power and limitations of science and consider any ethical issues which may arise. Use scientific theories and explanations to develop hypotheses. Use scientific vocabulary, terminology and definitions.	One 45 minute exam question based assessment on Acids & Alkalis and Light with two questions from Spring term content.

	Revision for Exams		
Summer B	Exam week	Science practical investigation skills. Using scientific equipment to build evidence towards	End of year exams –
	Space	a conclusion. Converting data to different formats – manipulating raw data to create an	one 90 minute paper
	 solar system 	appropriate graph. Carry out experiments appropriately having due regard for the correct	covering all content
	 the earth and moon 	manipulation of apparatus, the accuracy of measurements and health and safety	from Year 7.
	Science fair project	considerations. Make and record observations and measurements using a range of	
		apparatus and methods.	

Academic Year <u>Year; 8</u>	Content. Unit title and brief outline of content.	Skills taught in each unit.	Assessment – what knowledge and skills will be assessed and how?
Autumn A	Health and Lifestyle Diet Digestive system Drugs, alcohol and smoking The periodic table Metals and non metals Groups and periods Group 1,7 and 8 Electricity and magnetism Charge Current and pd Circuits Magnetic fields electromagnets 	Converting data to different formats – manipulating raw data to create an appropriate graph. Plan experiments or devise procedures to make observations, produce or characterise a substance, test hypotheses, check data or explore phenomena. Make and record observations and measurements using a range of apparatus and methods. Evaluate the accuracy, reliability & validity of data. Use a variety of models such as representational, spatial, descriptive, computational and mathematical to solve problems, make predictions and to develop scientific explanations and understanding of familiar and unfamiliar facts. Evaluate risks both in practical science and the wider societal context, including perception of risk in relation to data and consequences.	Exam style questions covering each unit with 30% weighting on content, 35% weighting on scientific skills and 35% weighting on application of skills. One 45-minute assessment mid-way through the half term.
Autumn B	Electricity and Magnetism (Finish) Ecosystems Photosynthesis Chemosynthesis Respiration Food chains and webs ecosystems Separating techniques solubility curves filtration distillation 	Science practical investigation skills. Using scientific equipment to build evidence towards a conclusion. Plan experiments or devise procedures to make observations, produce or characterise a substance, test hypotheses, check data or explore phenomena. Carry out experiments appropriately having due regard for the correct manipulation of apparatus, the accuracy of measurements and health and safety considerations. Make and record observations and measurements using a range of apparatus and methods. Evaluate the accuracy, reliability & validity of data. Evaluate methods and suggest possible improvements and further investigations. Recognise the importance of scientific quantities and understand how they are determined.	One 45-minute exam question based test with the same weightings as Autumn A. Questions will cover electricity and ecosystems.
Spring A	Separating techniques (Finish) Energy	Converting data to different formats – manipulating raw data to create an appropriate graph. Appreciate the power and limitations of science and consider any ethical issues which may	Same format as previous assessments,

	 fuels transfers of energy energy resources work and power 	arise. Use scientific vocabulary, terminology and definitions. Evaluate the accuracy, reliability & validity of data. Recognise the importance of peer review of results and of communicating results to a range of audiences. Evaluate methods and suggest possible improvements and further investigations. Recognise the importance of scientific quantities and understand how they are determined. Evaluate risks both in practical science and the wider societal context, including perception of risk in relation to data and consequences.	though two tests will be sat in one week covering every topic covered since September over 90 minutes.
Spring B	Adaptation and inheritance competition and adaptation variation inheritance natural selection Metals and Acids displacement reactions extracting metals ceramics polymers and composites 	Science practical investigation skills. Using scientific equipment to build evidence towards a conclusion. Understand how scientific methods and theories develop over time. Use scientific theories and explanations to develop hypotheses. Evaluate the accuracy, reliability & validity of data. Use a variety of models such as representational, spatial, descriptive, computational and mathematical to solve problems, make predictions and to develop scientific explanations and understanding of familiar and unfamiliar facts. Recognise the importance of peer review of results and of communicating results to a range of audiences.	One 45 minute exam question based assessment on adaptation & metals with two questions covering content from the Autumn term.
Summer A	Metals and Acids (Finish) Motion and Pressure • speed and motion • pressure in fluids • pressure in solids • turning forces Revision for Exams	Converting data to different formats – manipulating raw data to create an appropriate graph. Understand how scientific methods and theories develop over time. Make and record observations and measurements using a range of apparatus and methods. Use scientific vocabulary, terminology and definitions. Evaluate the accuracy, reliability & validity of data. Use a variety of models such as representational, spatial, descriptive, computational and mathematical to solve problems, make predictions and to develop scientific explanations and understanding of familiar and unfamiliar facts. Recognise the importance of peer review of results and of communicating results to a range of audiences.	One 45 minute exam question based assessment on metals and acids and motion & pressure with two questions from Spring term content.
Summer B	Exam revision and feedback The Earth • the atmosphere • rock cycle • carbon cycle • climate change	Science practical investigation skills. Using scientific equipment to build evidence towards a conclusion. Converting data to different formats – manipulating raw data to create an appropriate graph. Understand how scientific methods and theories develop over time. Appreciate the power and limitations of science and consider any ethical issues which may arise. Use scientific theories and explanations to develop hypotheses. Plan experiments or devise procedures to make observations, produce or characterise a substance, test	End of year exams – one 90 minute paper covering all content from Year 8.

	12
hypotheses, check data or explore phenomena. Carry out experiments appropriately having	
due regard for the correct manipulation of apparatus, the accuracy of measurements and	
health and safety considerations. Make and record observations and measurements using a	
range of apparatus and methods. Use scientific vocabulary, terminology and definitions.	
Evaluate the accuracy, reliability & validity of data. Use a variety of models such as	
representational, spatial, descriptive, computational and mathematical to solve problems,	
make predictions and to develop scientific explanations and understanding of familiar and	
unfamiliar facts. Recognise the importance of peer review of results and of communicating	
results to a range of audiences. Evaluate methods and suggest possible improvements and	
further investigations. Recognise the importance of scientific quantities and understand how	
they are determined. Evaluate risks both in practical science and the wider societal context,	
including perception of risk in relation to data and consequences.	

Academic Year <u>Year; 9</u>	Content. Unit title and brief outline of content.	Skills taught in each unit.	Assessment – what knowledge and skills will be assessed and how?
Autumn A	Cell Structure and transport microscopes animal and plant cells eukaryotic and prokaryotic cells cell specialisation diffusion and osmosis active transport Conservation and dissipation of energy conservation of energy energy transfers power and efficiency Energy transfer by heating conduction and radiation specific heat capacity 	Converting data to different formats – manipulating raw data to create an appropriate graph. Understand how scientific methods and theories develop over time. Plan experiments or devise procedures to make observations, produce or characterise a substance, test hypotheses, check data or explore phenomena. Carry out experiments appropriately having due regard for the correct manipulation of apparatus, the accuracy of measurements and health and safety considerations. Evaluate the accuracy, precision, reproducibility, reliability & validity of data and experimental technique of others. Apply mathematical principles to evaluate unfamiliar investigations. Explain everyday and technological applications of science; evaluate associated personal, social, economic and environmental implications; and make decisions based on the evaluation of evidence and arguments. Recognise when to apply a knowledge of sampling techniques to ensure any samples collected are representative. Use SI units (eg kg, g, mg; km, m, mm; kJ, J) and IUPAC chemical nomenclature unless inappropriate. Use prefixes and powers of ten for orders of magnitude (eg tera, giga, mega, kilo, centi, milli, micro and nano), interconvert units and use an appropriate number of significant figures in calculation.	Exam style questions covering each unit with 30% weighting on content, 35% weighting on scientific skills and 35% weighting on application of skills. One 45-minute assessment mid-way through the half term.
Autumn B	Cell Division • cell division • growth • stem cells Organisation and the digestive system • tissue and organs • digestive system • catalysts and enzymes Atomic Structure	Evaluate the accuracy, precision, reproducibility, reliability & validity of data and experimental technique of others. Apply mathematical principles to evaluate unfamiliar investigations. Explain everyday and technological applications of science; evaluate associated personal, social, economic and environmental implications; and make decisions based on the evaluation of evidence and arguments. Apply a knowledge of a range of techniques, instruments, apparatus, and materials to select those appropriate to the experiment. Recognise when to apply a knowledge of sampling techniques to ensure any samples collected are representative. Use SI units (eg kg, g, mg; km, m, mm; kJ, J) and IUPAC chemical nomenclature unless inappropriate. Use prefixes and powers of ten for orders of magnitude (eg tera, giga,	One 45-minute exam question based test with the same weightings as Autumn A. Questions will cover Cell division, energy transfer and organisation & digestive system

			tog_ti
Spring A	 atoms separating techniques electronic structure The periodic table electronic structure and the periodic table group 1 and 7 explaining trends transition elements Structure and Bonding 	mega, kilo, centi, milli, micro and nano), interconvert units and use an appropriate number of significant figures in calculation.	Same format as
Spring A	 Structure and Bonding states of matter ionic and covalent bonding ionic and covalent structures metallic bonding and structure nanoparticles Organising animals and plants the circulatory system the respiratory system and gas exchange tissue, organs and transport in plants Energy resources Renewable and non renewable energy sources Energy and the environment 	Science practical investigation skills. Using scientific equipment to build evidence towards a conclusion. Converting data to different formats – manipulating raw data to create an appropriate graph. Evaluate methods and suggest possible improvements and further investigations. Recognise the importance of scientific quantities and understand how they are determined. Evaluate risks both in practical science and the wider societal context, including perception of risk in relation to data and consequences. Evaluate the accuracy, precision, reproducibility, reliability & validity of data and experimental technique of others. Apply mathematical principles to evaluate unfamiliar investigations. Apply a knowledge of a range of techniques, instruments, apparatus, and materials to select those appropriate to the experiment. Use SI units (eg kg, g, mg; km, m, mm; kJ, J) and IUPAC chemical nomenclature unless inappropriate. Use prefixes and powers of ten for orders of magnitude (eg tera, giga, mega, kilo, centi, milli, micro and nano), interconvert units and use an appropriate number of significant figures in calculation.	Same format as previous assessments, though two tests will be sat in one week covering every topic covered since September over 90 minutes.
Spring B	Organising animals and plants (Finish)	Science practical investigation skills. Using scientific equipment to build evidence towards a conclusion. Converting data to different formats – manipulating raw data to create an	One 45 minute exam question based

	I	1	
	Communicable diseases pathogens and disease bacteria and viruses human defence responses plant diseases Electric circuits charge and current pd and resistance circuits Electricity in the home DC and AC Electrical safety Appliances and efficiency	appropriate graph. Understand how scientific methods and theories develop over time. Appreciate the power and limitations of science and consider any ethical issues which may arise. Use scientific theories and explanations to develop hypotheses. Plan experiments or devise procedures to make observations, produce or characterise a substance, test hypotheses, check data or explore phenomena. Carry out experiments appropriately having due regard for the correct manipulation of apparatus, the accuracy of measurements and health and safety considerations. Make and record observations and measurements using a range of apparatus and methods. Use scientific vocabulary, terminology and definitions.	assessment on organising animals and plants, communicable diseases and electric circuits with two questions covering content from the Autumn term.
Summer A	Communicable diseases (Finish) Chemical calculations • Relative mass and moles • Balancing equations • Yield and atom economy • titrations	Evaluate the accuracy, reliability & validity of data. Use a variety of models such as representational, spatial, descriptive, computational and mathematical to solve problems, make predictions and to develop scientific explanations and understanding of familiar and unfamiliar facts. Evaluate the accuracy, precision, reproducibility, reliability & validity of data and experimental technique of others. Apply mathematical principles to evaluate unfamiliar investigations. Use SI units (eg kg, g, mg; km, m, mm; kJ, J) and IUPAC chemical nomenclature unless inappropriate. Use prefixes and powers of ten for orders of magnitude (eg tera, giga, mega, kilo, centi, milli, micro and nano), interconvert units and use an appropriate number of significant figures in calculation.	One 45 minute exam question based assessment on electricity in the home, communicable diseases and chemical calculations with two questions from Spring term content.
Summer B	 Preventing and treating disease vaccination antibiotics and drugs Chemical changes the reactivity series displacement extracting metals neutralisation and salts 	Recognise the importance of peer review of results and of communicating results to a range of audiences. Evaluate methods and suggest possible improvements and further investigations. Recognise the importance of scientific quantities and understand how they are determined. Evaluate risks both in practical science and the wider societal context, including perception of risk in relation to data and consequences. Evaluate the accuracy, precision, reproducibility, reliability & validity of data and experimental technique of others. Explain everyday and technological applications of science; evaluate associated personal, social, economic and environmental implications; and make decisions based on the evaluation of evidence and arguments. Apply a knowledge of a range of techniques, instruments,	End of Key stage exams – two 90 minute paper covering all content from Year 7 onwards.

	-
apparatus, and materials to select those appropriate to the experiment. Recognise when to	
apply a knowledge of sampling techniques to ensure any samples collected are	
representative. Use SI units (eg kg, g, mg; km, m, mm; kJ, J) and IUPAC chemical nomenclature	
unless inappropriate. Use prefixes and powers of ten for orders of magnitude (eg tera, giga,	
mega, kilo, centi, milli, micro and nano), interconvert units and use an appropriate number of	
significant figures in calculation.	

Academic Year <u>Year; 10</u>	Content. Unit title and brief outline of content. AQA Science GCSE	Skills taught in each unit.	Assessment – what knowledge and skills will be assessed and how?
Autumn A	 P6 Molecules and Matter density sates of matter specific latent heat P7 Radioactivity structure of the atom discovery of the nucleus alpha beta and gamma fission and fusion C6 Electrolysis extraction of aluminium electrolysis of aqueous solutions C7 Energy Changes exothermic and endothermic reaction profiles bond energy calculations B1-6 Recap B7 Non-Communicable diseases cancer 	Science has a spiral curriculum for scientific skills. All of the skills taught in Year 7-9 are delivered each half term in Year 10 with an increased focus on application of skills to an unfamiliar context. Science practical investigation skills. Using scientific equipment to build evidence towards a conclusion. Converting data to different formats – manipulating raw data to create an appropriate graph. Understand how scientific methods and theories develop over time. Appreciate the power and limitations of science and consider any ethical issues which may arise. Use scientific theories and explanations to develop hypotheses. Plan experiments or devise procedures to make observations, produce or characterise a substance, test hypotheses, check data or explore phenomena. Carry out experiments appropriately having due regard for the correct manipulation of apparatus, the accuracy of measurements using a range of apparatus and methods. Use scientific vocabulary, terminology and definitions. Evaluate the accuracy, reliability & validity of data. Use a variety of models such as representational, spatial, descriptive, computational and mathematical to solve problems, make predictions and to develop scientific explanations and understanding of familiar and unfamiliar facts. Recognise the importance of peer review of results and of communicating results to a range of audiences. Evaluate methods and suggest possible improvements and further investigations. Recognise the importance of scientific quantities and	Each science is assessed half termly using GCSE questions, meaning that each student will sit 3x45 minute assessments for each of the Sciences studied that half term. As the terms progress, each subject will add more questions from previously taught content to ensure that the students retain a body of knowledge. Lessons and homework will be tailored to facilitate the interleaving of previous work. The assessments will carry the same weighting of content, science skills and

	smoking	understand how they are determined. Evaluate risks both in practical science and the	application of science as
	diet and exercise	wider societal context, including perception of risk in relation to data and	the real GCSEs.
	alcohol and carcinogens	consequences. Evaluate the accuracy, precision, reproducibility, reliability & validity of	Though the grade
Autumn B	P7 Radioactivity (finish)	data and experimental technique of others. Apply mathematical principles to evaluate	boundaries will be similar
	Consolidation of p1-7	unfamiliar investigations. Explain everyday and technological applications of science;	to the GCSEs, grades will
	C8 rates and equilibrium	evaluate associated personal, social, economic and environmental implications; and	be capped at a 6 if the
	rates of reaction	make decisions based on the evaluation of evidence and arguments. Apply a	students do not achieve
	 collision theory 	knowledge of a range of techniques, instruments, apparatus, and materials to select	high marks in the level 7
	 catalysts 	those appropriate to the experiment. Recognise when to apply a knowledge of	and above style
	 reversible reactions and 	sampling techniques to ensure any samples collected are representative. Use SI units	questions, which will be
	dynamic equilibrium	(eg kg, g, mg; km, m, mm; kJ, J) and IUPAC chemical nomenclature unless	indicated as such on the
	C9 Crude Oil	inappropriate. Use prefixes and powers of ten for orders of magnitude (eg tera, giga,	cover of the assessment
	hydrocarbons	mega, kilo, centi, milli, micro and nano), interconvert units and use an appropriate	paper.
	 fractional distillation 	number of significant figures in calculation.	
	 cracking B8 Photosynthesis 		
	rate of photosynthesis		
	• use of glucose		
	B9 Respiration		
	aerobic and anaerobic		
	metabolism and the liver		
Spring A	P8 Forces in Balance		
	 vectors and scalars 		
	resultant force		
	 moments 		
	centre of mass		
	P9 Motion (4 lessons)		
	 motion graphs 		
	 velocity and acceleration 		
	C10 Organic reactions		
			l

			_
	alkenes		
	alcohols, carboxylic acids		
	and esters		
	B10 The human nervous system		
	 homeostasis 		
	• the nervous system		
	relexes		
	• the brain and the eye		
	B11 Hormonal coordination		
	hormonal control		
	diabetes		I
	negative feedback		
	 hormones and reproduction 		
	plant hormones		
Spring B	P10 Force and motion		
	 force and acceleration 		
	 terminal velocity 		
	 momentum 		
	 elasticity 		
	C11 Polymers		
	 polymerisation natural polymers and DNA		
	• natural polymers and DNA B11 Hormonal coordination (finish)		l
	B12 Homeostasis		
	Body temperature		I
	Waste products		
	 Kidneys, dialysis 		
Summer A	Exam preparation		
Summer A			
Summer B	Consolidation	1	
	P11 Force and Pressure.		

Pressure in fluids	
Pressure at a surface	
Atmospheric pressure	
Consolidation of C1-6 B13 – Reproduction	
Cell division	
DNA and genome	
Inheritance and genetics	

Academic	Content and rationale.	Skills taught in each unit.	Assessment – how will the
Year	Unit title and brief outline of content.		knowledge and skills be
			assessed?
<u>Year 11</u>			
Autumn A	P12 Wave properties		Each science is assessed half
	Properties of waves		termly using GCSE questions,

		-	
	 Reflection and refraction Sound and ultrasound Seismic waves P12 Electromagnetic waves 	Science has a spiral curriculum for scientific skills. All of the skills taught in Year 7-9 are delivered each half term in Year 11 with an increased focus on application of skills to an unfamiliar context.	meaning that each student will sit 3x45 minute assessments for each of the Sciences studied that half term. As the terms
	 P13 Electromagnetic waves EM spectrum – uses and dangers C12 Chemical analysis Pure substances and mixtures Chromatograms Tests for gas and ions C13 The Earth's atmosphere Evolving atmosphere Greenhouse gases Climate change B14 Variation and evolution Evolution and natural selection Selective breeding Cloning and ethics 	Science practical investigation skills. Using scientific equipment to build evidence towards a conclusion. Converting data to different formats – manipulating raw data to create an appropriate graph. Understand how scientific methods and theories develop over time. Appreciate the power and limitations of science and consider any ethical issues which may arise. Use scientific theories and explanations to develop hypotheses. Plan experiments or devise procedures to make observations, produce or characterise a substance, test hypotheses, check data or explore phenomena. Carry out experiments appropriately having due regard for the correct manipulation of apparatus, the accuracy of measurements and health and safety considerations. Make and record observations and measurements using a range of apparatus and methods. Use scientific vocabulary, terminology and definitions. Evaluate the accuracy, reliability & validity of data. Use a variety of	progress, each subject will add more questions from previously taught content to ensure that the students retain a body of knowledge. Lessons and homework will be tailored to facilitate the interleaving of previous work. The assessments will carry the same weighting of content, science skills and application of science as the real GCSEs. Though the grade boundaries will be similar to the GCSEs,
	 B15 genetics and evolution Evolution and specialisation Fossils and extinction Antibiotic resistant bacteria classification 	models such as representational, spatial, descriptive, computational and mathematical to solve problems, make predictions and to develop scientific explanations and understanding of familiar and unfamiliar facts. Recognise the importance of peer review of results and of communicating results to a range of audiences. Evaluate methods and	grades will be capped at a 6 if the students do not achieve high marks in the level 7 and above style questions, which will be indicated as such on the
Autumn B	Mock preparation Mock Preparation B15 Genetics and evolution (finish) Mock preparation	suggest possible improvements and further investigations. Recognise the importance of scientific quantities and understand how they are determined. Evaluate risks both in practical science and the wider societal context, including perception of risk in relation to data and consequences. Evaluate the accuracy, precision, reproducibility,	cover of the assessment paper.
Spring A	P14 Light reflection refraction colour lenses 	reliability & validity of data and experimental technique of others. Apply mathematical principles to evaluate unfamiliar investigations. Explain everyday and technological applications of science; evaluate associated personal, social, economic and environmental implications;	

 electrie the m the generation transf C14 The Earth' finite a water extraction recyclit C15 Using our rusting alloys, composition rusting alloys, composition haber B16 Adaptation competition competition competition feedin materia carbor Spring B P16 Space solar solar sol	arguments. Apply a knowledge of a range of techniques, instruments, apparatus, and materials to select those appropriate to the experiment. Recognise when to apply a knowledge of sampling techniques to ensure any samples collected are representative. Use S1 units (eg kg, g, mg; km, m, mm; kJ, J) and IUPAC chemical nomenclature unless inappropriate. Use prefixes and powers of ten for orders of magnitude (eg tera, giga, mega, kilo, centi, milli, micro and nano), interconvert units and use an appropriate number of significant figures in calculation.	

Summer term: End of KS readiness for the 6 th form	Key Knowledge studied at KS4 that will be useful for the 6 th form	Summary of the main core skills taught at KS4 that can be reactivated at KS5	
	 biodiversity biomass transfer sustainability Exam preparation 		
	pollution		

Key Stage 2 content summary; Scientific enquiry principles. Plant biology, forces and magnets, rocks, Light, living things and their habitat, animals (inc. humans), states of matter, sound, electricity, properties and change of materials, Earth and space, evolution and inheritance.

Year 7 Content These units form the foundations of	<u>Skills taught</u> . Are the skills taught in a spiral curriculum? What is the rationale for your sequencing of skills
science. Without teaching these units, students would not	
have the basic knowledge to build upon over time.	Science has a spiral curriculum for scientific skills. The first term is used to ensure that all
Working scientifically, Cells, Particles and their behaviour,	students' skills are consistent and then each year layers the depth and complexity of skills
Forces, Structure of the body system, Elements, atoms	required to succeed in every Key Stage in Science.
and compounds, Reactions, Sound, Reproduction,	
Chemical reactions, Acids and Alkalis, Light, Space.	Year 7 - science practical investigation skills. Using scientific equipment to build evidence
Year 8 Content These units build upon the foundations of	towards a conclusion. Converting data to different formats – manipulating raw data to create
science and deliver the key principles that can then be	an appropriate graph. Understand how scientific methods and theories develop over time.
layered upon with more complexity in the next key stage.	Appreciate the power and limitations of science and consider any ethical issues which may
Health and Lifestyle, The periodic table, Electricity and	arise. Use scientific theories and explanations to develop hypotheses. Plan experiments or
magnetism, Ecosystems, Separating techniques, Energy,	devise procedures to make observations, produce or characterise a substance, test
Adaptation and inheritance, Metals and Acids, Motion	hypotheses, check data or explore phenomena. Carry out experiments appropriately having
and Pressure, The Earth.	due regard for the correct manipulation of apparatus, the accuracy of measurements and
Year 9 Content These units map out the start of GCSE and	health and safety considerations. Make and record observations and measurements using a
use all of the Ks3 content to deepen the complexity and	range of apparatus and methods. Use scientific vocabulary, terminology and definitions.
understanding of the science.	
Cell Structure and transport, Conservation and	Year 8 – evaluate the accuracy, reliability & validity of data. Use a variety of models such as
dissipation of energy, Energy transfer by heating, Cell	representational, spatial, descriptive, computational and mathematical to solve problems,
Division, Organisation and the digestive system, Atomic	make predictions and to develop scientific explanations and understanding of familiar and
Structure, The periodic table, Structure and Bonding,	unfamiliar facts. Recognise the importance of peer review of results and of communicating

Science is the application of earned knowledge for the emp	powerment of our students.
	ns and finds the answers using scientific techniques. We the challenge the reliability of any orld around our students, from their phones to their heart, really works.
Is all of the NC Ks3 content taught in Year 7 & 8? If not, where is this made up? The NC Ks3 content is delivered in Year 7-8 in Science, with students moving to Double and Triple science classes in Year 10. In Year 9, students start the GCSE course, building on the skills and content from Year 7 and 8.	
Year 11 Content – see above.	Please see below for specific maths skills required in Year 9 - 11
analysis, Chemistry of the atmosphere, Using resources, Particle model of matter, Atomic structure, Electrolysis, Forces, Waves, Magnetism and electromagnetism.	appropriate number of significant figures in calculation. Year 10 & 11 focus on all of the skills with a stronger emphasis on application of scientific techniques.
and content before. They cannot be taught any earlier. Taught in specialisms. Bioenergetics, Homeostasis and response, Inheritance, variation and evolution, Ecology, Quantitative chemistry, Chemical changes, Energy changes, The rate and extent of chemical change, Organic chemistry, Chemical	evaluation of evidence and arguments. Apply a knowledge of a range of techniques, instruments, apparatus, and materials to select those appropriate to the experiment. Recognise when to apply a knowledge of sampling techniques to ensure any samples collected are representative. Use SI units (eg kg, g, mg; km, m, mm; kJ, J) and IUPAC chemical nomenclature unless inappropriate. Use prefixes and powers of ten for orders of magnitude (eg tera, giga, mega, kilo, centi, milli, micro and nano), interconvert units and use an
<u>Year 10 & 11</u> (Double and Triple work at a different pace so some topics in some classes will be taught at a different time) <i>These units are the culmination of content</i> <i>taught in previous years and require a firm grasp of skills</i>	Year 9 – evaluate the accuracy, precision, reproducibility, reliability & validity of data and experimental technique of others. Apply mathematical principles to evaluate unfamiliar investigations. Explain everyday and technological applications of science; evaluate associated personal, social, economic and environmental implications; and make decisions based on the
Organising animals and plants, Energy resources, Electric circuits, Communicable diseases, Electricity in the home, Chemical calculations, Preventing and treating disease, Chemical changes.	results to a range of audiences. Evaluate methods and suggest possible improvements and further investigations. Recognise the importance of scientific quantities and understand how they are determined. Evaluate risks both in practical science and the wider societal context, including perception of risk in relation to data and consequences.

Students will use practical or research methods to investigate a question or observed phenomena and then critically evaluate the conclusions made and get a clearer understanding of the science underpinning the question. Question \rightarrow investigate \rightarrow evaluate \rightarrow understand \rightarrow Apply.

Maths skill requirements in Year 9, 10 and 11

1 Arithmetic and numerical computation

a Recognise and use expressions in decimal form b Recognise and use expressions in standard form c Use ratios, fractions and percentages d Make estimates of the results of simple calculations

2 Handling data

a Use an appropriate number of significant figures b Find arithmetic means c Construct and interpret frequency tables and diagrams, bar charts and histograms d Understand the principles of sampling as applied to scientific data (biology only) e Understand simple probability (biology only) f Understand the terms mean, mode and median g Use a scatter diagram to identify a correlation between two variables (biology and physics only) h Make order of magnitude calculations

3 Algebra

a Understand and use the symbols: =, <, <<, >>, >, \propto , \sim b Change the subject of an equation c Substitute numerical values into algebraic equations using appropriate units for physical quantities (chemistry and physics only) d Solve simple algebraic equations (biology and physics only)

4 Graphs

a Translate information between graphical and numeric form b Understand that y = mx + c represents a linear relationship c Plot two variables from experimental or other data d Determine the slope and intercept of a linear graph e Draw and use the slope of a tangent to a curve as a measure of rate of change (chemistry and physics only) f Understand the physical significance of area between a curve and the x-axis and measure it by counting squares as appropriate (physics only)

5 Geometry and trigonometry

a Use angular measures in degrees (physics only) b Visualise and represent 2D and 3D forms including two dimensional representations of 3D objects (chemistry and physics only) c Calculate areas of triangles and rectangles, surface areas and volumes of cubes

Serviam; Developing our gifts and talents for the good of others.

Serviam; Developing our gifts and talents for the good of others.

